

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 7998-8000

The first syntheses of 3-bromofascaplysin, 10-bromofascaplysin and 3,10-dibromofascaplysin—marine alkaloids from *Fascaplysinopsis reticulata* and *Didemnum* sp. by application of a simple and effective approach to the pyrido[1,2-a:3,4-b']diindole system

Maxim E. Zhidkov,^a Olga V. Baranova,^a Nadezhda N. Balaneva,^b Sergey N. Fedorov,^b Oleg S. Radchenko^{b,*} and Sergey V. Dubovitskii^a

^aDepartment of Chemistry, Far Eastern National University, 8 Sukhanov Str., Vladivostok 690950, Russia ^bPacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia

> Received 27 June 2007; revised 31 August 2007; accepted 7 September 2007 Available online 12 September 2007

Abstract—A simple and practical approach for the synthesis of the marine sponge pigment fascaplysin was used for the total syntheses of its natural derivatives, the marine alkaloids 3-bromofascaplysin, 10-bromofascaplysin, and 3,10-dibromofascaplysin. The conditions of each step were revised, and as a result these compounds were produced by identical procedures with total yields of 40-43%.

© 2007 Elsevier Ltd. All rights reserved.

The 12*H*-pyrido[1,2-*a*:3,4-*b'*]diindole ring system 1 forms the framework of several marine alkaloids. The red pigment fascaplysin **2**, which was isolated in 1988 from the sponge *Fascaplysinopsis Bergquist* sp.,¹ is the most investigated representative. It exhibits a broad range of bioactivities including antibacterial, antifungal, antiviral, HIV-1-RT, p56 tyrosine kinase, antimalarial, potency to numerous cancer cell lines, specific inhibition of Cdk 4 and DNA intercalation.² These activities demonstrate the huge potential of fascaplysin derivatives for therapeutic assays and necessitates the elaboration of effective methods for their syntheses.

Recently, three bromosubstituted derivatives of fascaplysin were isolated: 3-bromofascaplysin 3, 10-bromofascaplysin 4 and 3,10-dibromofascaplysin 5 from the sponge *Fascaplysinopsis reticulata* and the tunicate *Didemnum* sp.³ We report here the first total syntheses of these compounds via a simple approach involving

pyrido[1,2-*a*:3,4-*b'*]diindole formation, which we have elaborated for the synthesis of fascaplysin.⁴ In the course of our work the conditions of each step were revised, and as a result the three bromofascaplysins were produced by identical procedures with total yields of 40–43% (Scheme 1 and Table 1).

The starting materials in our synthetic sequence were: tryptamine 6, 6-bromotryptamine 7, (2-bromophenyl)acetic acid 8, and (2,4-dibromophenyl)acetic acid 9.⁵ The latter substance was prepared in three steps from commercially available 3-bromo-4-methylaniline in 54% overall yield (Scheme 2). Each step was realized

Keywords: Synthesis; Marine alkaloids; Pyrido[1,2-*a*:3,4-*b*']diindoles; Bromofascaplysins.

^{*} Corresponding author. Tel.: +7 4232 319 932; fax: +7 4232 314 050; e-mail: radchenko@piboc.dvo.ru

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.09.057

Scheme 1. Reagents and conditions: (a) 8 or 9, DCC, CH₃CN, reflux, 30 min; (b) POCl₃, CH₃CN, Ar, reflux, 40 min, then MnO₂, PhH, reflux, 3 h; (c) 220 °C, 20 min; (d) HCl (dry), CH₃OH.

Table 1. Yields of the intermediates in the syntheses of 3, 4, and 5

Target	Yield of acylation (step a), %	Yield of cyclization with oxidation (step b), %	Yield of quaternization (step c), %	Total yield, %
3-Bromofascaplysin 3	89	60	80	43
10-Bromofascaplysin 4	88	58	80	41
3,10-Dibromofascaplysin 5	88	57	80	40

Scheme 2. Reagents and conditions: (a) NaNO₂, HBr (aq), 0 °C, then CuBr, HBr (aq), reflux, 40 min; (b) NBS, AIBN, CCl₄, reflux, 1 h; (c) NaCN, C₂H₅OH (aq), reflux, 1 h, then H₂SO₄ (aq), reflux, 12 h.

by standard procedures and was not optimized. This sequence can be used for obtaining a number of (2-bromophenyl)acetic acids, substituted at C-4 of the aromatic ring. Compounds **6** and **8** are commercially available, and the synthesis of 6-bromotryptamine **7** is described in the literature.⁶

To obtain amides 10–12 we attempted to use high-temperature azeotropic distillation as in the original fascaplysin synthesis, however, this synthetic method was ineffective. Acylation of tryptamines 6 and 7 with the acyl chlorides obtained from acids 8 and 9 was accompanied by secondary reactions, affording yields of the target products of about 20% after chromatographic separation. Use of N,N'-dicyclohexylcarbodiimide (DCC) as a condensing agent allowed the preparation of amides 10–12 in 88–89% yield without additional purification.⁷ Compounds 10–12 were converted to α -acyl substituted β -carbolines 13–15 in two steps without isolation of the intermediate dihydro- β -carbolines.⁸ Bischler–Napieralski cyclization was realized using POCl₃ in acetonitrile. The dihydro- β -carbolines were oxidized using MnO₂ (oxygen can be used instead without a decrease in yield).⁹

Finally, short-run heating of β -carbolines 13–15 yielded the pyridodiindole quaternary salts 16–18, which were converted into compounds 3–5 by treatment with dry HC1 in MeOH. The overall yields of products were 40–43%. The spectral characteristics of synthetic fascaplysins 3–5 were identical to those of the natural products.^{3,4}

At the present time, the biological activities of synthetic 3-bromofascaplysin **3**, 10-bromofascaplysin **4** and 3,10-

dibromofascaplysin 5 are being investigated thoroughly. It has already been shown by flow cytometry that compounds 3 and 4 induced apoptosis in human leukemia HL-60 cells at low concentrations of $0.25 \,\mu\text{M}$: 35.8% and 36.1% of the apoptotic cells compared to untreated control cells.

We intend to apply this approach to the formation of 12H-pyrido[1,2-a:3,4-b']diindole ring systems to synthesize various fascaplysin derivatives, that, in turn, will open up fresh opportunities for detailed studies of the structure activity relationships among these potentially physiologically active substances.

Acknowledgments

The research described in this publication was made possible in part by the award No. RUXO-003-VL-06 from the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF) and the Russian Ministry of Education and Science. This work was also supported by a Grant from the Program of Presidium of RAS 'Molecular and Cell Biology, FEBRAS Grant 06-III-A-05-122, Grant of the Russian Foundation for Basic Research (No. 04-48246) and Grant of President of RF for the Support of the Leading Science School (No. 6491.2006.4).

References and notes

- Roll, D. M.; Ireland, C. M.; Lu, H. S.; Clardy, J. J. Org. Chem. 1988, 53, 3276–3278.
- For example see: (a) Jimenez, C.; Quinoa, E.; Adamczeski, M.; Hunter, L. M.; Crews, P. J. Org. Chem. 1991, 56, 3403– 3410; (b) Schmidt, E. W.; Faulkner, D. J. Tetrahedron Lett. 1996, 37, 3951–3954; (c) Kirsch, G.; Konig, G. M.; Wright, A. D.; Kaminsky, R. J. Nat. Prod. 2000, 63, 825–829; (d) Charan, R. D.; McKee, T. C.; Gustafson, K. R.; Pannell, L. K.; Boyd, M. R. Tetrahedron Lett. 2002, 43, 5201–5204; (e) Popov, A. M.; Stonik, V. A. Antibiot. Khimioter. 1991, 36, 12–14; (f) Soni, R.; Muller, L.; Furet, P.; Schoepfer, J.; Stephan, C.; Zunstein-Mecker, S.; Fretz, H.; Chaudhuri, B. Biochem. Biophys. Res. Commun. 2000, 275, 877–884; (g)

Hormann, A.; Chaudhuri, B.; Fretz, H. Bioorg. Med. Chem. 2001, 9, 917–921.

- Segraves, N. L.; Robinson, S. J.; Garcia, D. J. Nat. Prod. 2004, 67, 783–792.
- Radchenko, O. S.; Novikov, V. L.; Elyakov, G. B. *Tetrahedron Lett.* 1997, 38, 5339–5342.
- 5. Compound 9: white needles; mp 141–142 °C; IR (KBr) v_{max} : 2965, 1708, 1658, 1581, 1468 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ : 7.75 (d, J = 1.9 Hz, 1H), 7.42 (dd, $J_1 = 8.3$ Hz, $J_2 = 1.9$ Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 3.79 (s, 2H, –CH₂–); ¹³C NMR (75 MHz, CDCl₃) δ : 175.8, 135.2, 132.6, 132.5, 130.8, 125.7, 122.0, 40.7; MS (APCI): m/z = 293/295/297 (50.9:100.0:49.5) (M+H)⁺. Anal. Calcd for C₈H₆O₂Br₂: C, 32.69; H, 2.06. Found: C, 32.62; H, 2.08.
- Santos, L. S.; Pilli, R. A.; Rawal, V. H. J. Org. Chem. 2004, 69, 1283–1289.
- 7. For example, compound **10**: white solid; mp 119–120 °C; IR (KBr) v_{max} : 3366, 3284, 3081, 2944, 1650, 1627, 1614, 1580, 1563, 1468 cm⁻¹; ¹H NMR (250 MHz, DMSO-*d*₆) δ : 10.81 (br s, 1H, NH), 8.14 (t, J = 5.9 Hz, 1H, NHCO), 7.82 (d, J = 2.2 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.51 (dd, $J_1 = 8.1$ Hz, $J_2 = 2.2$ Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 8.1 Hz, 1H), 7.14 (d, J = 2.2 Hz, 1H), 7.06 (td, $J_1 = 6.8$ Hz, $J_2 = 8.1$ Hz, $J_3 = 1.2$ Hz, 1H), 6.97 (td, $J_1 = 6.8$ Hz, $J_2 = 8.1$ Hz, $J_3 = 1.2$ Hz, 1H), 3.56 (s, 2H, -CH₂-CO), 3.35 (q, $J_1 = 7.3$ Hz, 2H, CH₂-NH), 2.83 (t, J = 7.3 Hz, 2H, *CH*₂-CH₂-NH); ¹³C NMR (75 MHz, CDCl₃) δ : 169.4, 136.4, 134.9, 133.0, 131.7, 129.0, 127.9, 127.2, 124.9, 122.1, 122.0, 119.4, 118.6, 112.7, 111.2, 44.1, 39.8, 33.9; MS (APCI) m/z = 435/437/439 (50.5:100.0:50.7) (M+H)⁺. Anal. Calcd for C₁₈H₁₆N₂OBr₂: C, 49.57; H, 3.70; N, 6.42. Found: C, 49.67; H, 3.72; N, 6.48.
- 8. For example, compound **13**: yellow solid; mp 174–175 °C; IR (KBr) v_{max} : 3292, 3061, 1657, 1625, 1576, 1494, 1463 cm⁻¹; ¹H NMR (250 MHz, DMSO- d_6) δ : 10.45 (br s, 1H, NH), 8.48 (d, J = 4.9 Hz, 1H), 8.44 (d, J = 4.9 Hz, 1H), 8.34 (d, J = 7.9 Hz, 1H), 8.02 (d, J = 1.9 Hz, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.77 (dd, $J_1 = 8.3$ Hz, $J_2 = 1.9$ Hz, 1H), 7.64 (td, $J_1 = 7.2$ Hz, $J_2 = 8.0$, Hz, $J_3 = 1.0$ Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.34 (td, $J_1 = 7.2$ Hz, $J_2 = 7.9$ Hz, $J_3 = 1.0$ Hz, 1H); ¹³C NMR (75 MHz, DMSO- d_6) δ : 195.9, 141.9, 140.5, 137.9, 135.3, 134.8, 134.3, 131.3, 131.0, 130.3, 129.2, 123.2, 121.9, 120.5, 120.0, 119.8, 113.1; MS (APCI) m/z = 429/431/433 (50.5:100.0:50.6) (M+H)⁺. Anal. Calcd for C₁₈H₁₀N₂OBr₂: C, 50.27; H, 2.34; N, 6.51. Found: C, 50.37; H, 2.36; N, 6.60.
- Garcia, M. D.; Wilson, A. J.; Emmerson, D. P. G.; Jenkins, P. R. Chem. Commun. 2006, 2586–2588.